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Hawking Thermal Radiation of the Dirac Particle 
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The dynamical properties of Dirac spinor particles in a spherically symmetric 
nonstatic space-time are studied. The explicit representative of the four-component 
wave function of Dirac particles is obtained. The Dirac equation can be reduced 
to the standard form of the wave equation near the event horizon by the proper 
coordinate transformation. The event horizon location and Hawking radiation 
temperature are obtained. 

1. INTRODUCTION 

A significant development in quantum field theory over the past 20 
years is the discovery of the quantum mechanical nonstability of the black hole 
(Gegenberg and Kunstatter, 1933). This important theoretical development not 
only solved a contradiction in black hole thermodynamics, but also deeply 
revealed the contact of quantum mechanics, thermodynamics, and gravity. 

In the universe a black hole surely changes with time because of evapora- 
tion and accretion, so it is important to study its Hawking radiation in order 
to completely understand it. 

A popular method to study a Hawking nonstatic black hole considering 
the radiation backreaction is to use the theory of quantum fields in curved 
space-time, but this theory is useful only for weak radiation and is compli- 
cated. In recent years, we suggested a new research approach and obtained 
the Hawking radiation temperature of a Klein-Gordon particle for every 
nonstatic space-time. 

In this paper, we study the dynamic forms of the Dirac particle in 
spherically symmetric nonstatic space-time. By using the proper coordinate 
we obtain the solution of the equation of the Dirac particle, which shows 
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that the static mass is not zero near the black hole event horizon in spherically 
symmetric nonstatic space-time, and we obtain the corresponding Hawking 
thermal spectrum formula. 

2. THE DIRAC EQUATION IN SPHERICALLY SYMMETRIC 
NONSTATIC SPACE-TIME 

In spherically symmetric nonstatic space-time, the linear element is 
(Zhao, 1993) 

d s  2 = g o o d y  2 d- 2goldv dr  - r2(d0  2 + sin20 dtp 2) (1) 

We use the signature (+,  , , ), and goo = goo(V, r), gol = gol(V, r). The 
zero frames form of the metric is 

as 2 ~ -  (l~dx~)(n~lx ~) + (n~dxr)(l~dx ~) 

- ( m C d x ~ ) ( ~ x  ~) - (-~rdxr ~) (2) 

and we select the zero frames as follows 

l~,= [ lgoo ,  gol, 0, O ] ,  n r  O.O,O] (3) 

r r 
m~ = - ~  [0, 0.1, i sin 0], m r = ~ [0.0, 1, - i sin 0] 

From(3),  we get 

E 1,~0o] n~[Ol_0o] l r  1, 2gol  gol 

1[ i 1 m r = - ~  0 , 0 , - 1 , - s i n 0  ' 
,[ i 

m---~=-~ 0 , 0 , -  1, s ine 

(4) 

o] 

O 1 O 
D = l ~ . . . . .  

Ox ~ goi Or 

~m~0 1(~ / ~ )  
Ox ~ = - - ~ r  + 

(5) 

'=m~0 l(~ /~ ) 
0x r = - - ~  sin 0 O 

Equations (3) and (4) are zero vectors and satisfy pseudo-orthogonal and 
metric conditions. From (4) the direction differentials are 
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From (3) and (4), according to (4.1a) in Newman and Penrose (1963), we 
obtain the spin coefficients as follows: 

g0o 1 1 
= , - , ct - ctg 0; 

P 2rgo~ IX rgol 2x/~r 

1 O g O l  1 Ogoo 
- ( 6 )  

2gol O v  4gol Or 

[3---- --Or, K = O ' =  T = ~ /  = k = ~ = P - - - -0  

The Dirac particle's field equation in spin coordinate form in curved space- 
time is 

Ixo -- Ixo VAsP A + i - ~ Q B  = 0 ,  VABQ a + i ~ P 8  = 0 (7) 

where pA and QA are two-component spinors, VAB is the covariant differentia- 
tion, and Ixo is the static mass of the Dirac particle. 

Using the zero frames, (7) can be reduced to 

(D + e p)Fl + (~ + 7r ct)F2 . Ixo 
_ _ = i - - a l  

�9 Ixo G2 (A + I x - - y ) F  2 + ((8 + [3-- x)Fl = t - -  
(8) 

(D + g p)G2 (8 + ~ K)GI . Ixo _ _ _ = l - - F 2  

(A + ~ ~ ) G  1 (8 -F [3 ~)G 2 . IXO _ _ __ = l - - g  1 

where F1 = p o  F2 = P l, GI = Q l, and G2 = _QO. The explicit representa- 
tions of  D, A, 8 and e, p, "tr, or, [3, % ix, and ~/are (5) and (6), respectively. 

Substituting (5) and (6) into (8), we get 

0 goo 0 + _~1 0got 1 0 g o o  goo ~fl 
0-v 2gol Or 2gol 0~- 4gol Or 2rgoJ 

1 )  i 
+ ~ c t g 0  F 2 - ~ I X o G I  = 0  

1 [ 0  i 0 

,e/2r ~O0 sin 0 0q~ 

- sinO  rgol ~ r  ~-0 + - + ctgO f l -  

(9) 

IX0G2 = 0 
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0 goo 0 + 1 Ogol 1 Ogoo goo 

0-v 2gol Or 2gin Ov 4got Or 2"-~golJg2 

1 ( ~  0 i 0 
+ " ~  + sin----'O 0"~ 

l c t g 0 ] G ~ _  i = 0  

l )  i 
-~r  + g l  + ' - -  rgo~ ~ r r  sin 0 0q~ 

Assuming that 

E1 = eim*fl(v, r, 0), 

Gl = eim*gl(v, r, 0), 

we separate Variables as follows: 

fx = R_(v, r)S_(O), 

gl = R_(v, r)S_(O), 

Thus (9) can be reduced to 

~_~_2 ER - 
gol 

v/~ E+R+ 
gol 

F+S+ = hS_ 

FS_ = - k S +  

where 

1 )  i 
ctg 0 G2 - " ~  

F 2 = Eim~f2(v , r, O) 

G 2 --- eim~g2(v, r, O) 

f2 = R+(v, r)S+(O) 

g2 = R_(v, r)S+(0) 

= (ilxo'r + h)R+ 

= (i~or - h)R_ 

~LoF 1 = 0 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

0 r 0 r Ogot r Ogoo 1 0 
E = gmr ~r - 2 g~176 -~r + 2 0v 4 Or 2 g~176 E+ = r or + l 

0 m + 1  F+ = 0 + m + 1  
F - 00 sin 0 ~ ctg 0, 0--0 sin 0 ~ ctg 0 

h is a constant of separation of variables. The radial equation can be reduced to 4)0  
gOl Or2 2 Or 0----~ + \il~-~-+ h -~v + . . . .  \ rgm gm Ov 

+ 3 Ogre goo Ogol i__~org~__ ~ Or_ 
Ego---] Or g21 Or (ir~o + h)gm] ~ r  + B_ R_ = 0 (16) 
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where 

B _  - 
1 Ogol Ogol 1 02got 1 02go0 1 Ogol Ogoo 1 Ogoo - - + - - - -  + - -  

g21 Or Ov got OrOv 2gol Or E 2gEt Or Or rgol Or 

goo Ogol goo 1 Ogol 
rg~t Or r2got rgol Ov 

1 
r 2 ( h2 + pLo2r2)got 

+ m 
k ~-[l~or I Ov 2gol Or 

3. H A W K I N G  E V A P O R A T I O N  OF D I R A C  PARTICLE N E A R  T H E  
B L A C K  H O L E  H O R I Z O N  

Introducing the tortoise coordinates (Zhao et al., 1996) 

= ln[r - rn(v)], v ,  = f A  ('r n, v) dv r, 

where rn(v) is the horizon radius of  the black hole, we have 

a(rn'  v) = - [  g~176 + 2i'ng~l + G ~ i  r=rn 

c + [ 1  Ogo, 1 Ogo, 
t Ov 2gol Or r--~ol" r=rn 

Here ~o is a constant 
Equation (16) can be reduced to 

goo/got + i'n O2R- 02R- [ goo 
r - rn 0---~, - 2A OvOr----** got(r -- rn) 

. [  i2tzo 4'~ 3 0g01 gooOgol 
+ r ~ i l ~  X r )  2go, 0--r- + goZ--~ 0---~ 

4) o._ i21xo a(r - r u ) -  = 0 
+ ( r -  rn)B_R_ + \'i~-'~--+ k Ov, 

2 ~  + m  
r - - r  H 

(17) 

+ il~orgoo ] OR_ 
(ir}xo + h)g01J Or, 

(18) 

We will consider the asympotic forms of  (18) near the horizon when r - 
rn. In order to make the limit of  the coefficient of 02 R-IOr2, finite, we must 
demand that the particle satisfy 

lim [g0o + 2/'rigor] = 0 (19) 
r ~  rH 
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That is, 

[goo + 2fngol]r=rH = 0 (20) 

Equation (20) is the equation that decides the location of black hole horizon 
surface; it is in concordance with the conclusion of the null-surface equation. 

Thus 

lim g00 + 2f'Hgo1 _ g~o +_ 2rngol  (21) 
r-rn gol(r -- rn) got Ir=rH 

where g ~o = Ogoolar, g ~l = OgollOr. Then, near r = rn; (18) can be reduced to 

[g~o + 2fng~l] OZR- 02R_ OR_ 
g Ol _Jr=r. 0 7 ,  + 2,40v.Or----~. + G Or---. - 

Two solutions for (22) are 

- 0 ( 2 2 )  

R in_ = e -i~ (23) 

ROut = e -  io~v. eZior. (24) 

We know the vibration frequency in (23) and (24) at the condition that the 
time coordinate is v, ;  now we let w be the vibration frequency when the 
time coordinate is v; thus 

From (17) we get 

toy, = ~v (25) 

ito' 
to = -- + - -  (26) 

K K 

where 

l; 
to' = ~ v  G d v  K = m - - l f [  g~O'~-2fHg~l ']  dv  

V g 0 1  ..[r=rH 

Then (23) and (29) can be reduced to 

Rin = e - ~ r  

ROUt = e-O~r e2itor.ilK e -  2to ' r*lK 

(27) 

(28) 

(28) is not analytic at r = rn; according to Damour and Ruffini (1976), the 
only analytic continuation to the inside of the horizon through the lower 
half-plane, 

( r -  rH) -- Ir - rH]e -i~r = (r  H -- r )e  -i~r (29) 
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Thus  

~e-iUve2Fdr*/Ke -2t~ r > r ,  (30) 
R out = [ R~ r < rt-t 

The scattering probability of the outgoing wave R ~ at the horizon is 
ROUt 2 

= e -4~r~//K ( 3 1 )  

where 
~out = R oUtE2~/K~.2~'i/K 

Following Sannan (1988) we have 

1 

N-~ - er + 1 

Y l 
g01 Ir=rH 

( 3 2 )  

(33) 

4. CONCLUSION 

Equation (32) is the Hawking radiation thermal spectrum formula of a 
Dirac particle on a spherically symmetric nonstatic black hole horizon surface. 
It contains a temperature parameter determined by the space-time metric 
components g0o and g0~- 

There are some particular examples as follows: 
1. Vaidya black hole (Balbinot, 1986; York, 1984): 

Substituting (34) into (20) and (33), we get 

2M(v) 
r , ,  - - -  ( 3 5 )  

1 - 2 ~ .  

T =  2-~v I Mr(~n) dv (36) 

2. The spherically symmetric black hole (York, 1984) 

ds2 = e 2,(1 2A~(v) )dvE_2e ,  d v dr _ r 2 dl.12 (37) 
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w h e r e ,  = , (v,  r), M = M (v, r). 
Substituting (37) into (20) and (33), we get 

2M(v) (38) 
rH = 1 - 2rile-* 

1 f [  ( 2 y )  O, O M + e * 2 M  2i'u 0 . ]  dv (39) 
T = ~ /  e* 1 - -~r + 2e* 0-'-r" -'7- -- ~ r f r .  

From the discussion above, the energy spectrum of the Dirac particle near a 
black hole horizon surface has the form of black hole radiation. We obtain 
the equations giving the location of  the event horizon and the Hawking 
radiation temperature. These 4-results coincide with the results from studying 
scalar particles (York, 1984). We avoid the difficulty of finding the energy- 
momeutum tensor and provide a way for studying the thermal effect of Dirac 
particles in nonstatic space-time. 
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